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ABSTRACT

'NThis paper reviews and applies certain results concerning the matrix

pseudoinverse to the general theory of estimable functions and minimal

variance estimates. The paper is divided into two sections. The first

section reviews and extends certain known results concerning the matrix

pseudoinverse. This section is essentially nonstatistical. The second

section uses results in the first section to state and prove a generalized

version of the Gauss-Markoff Theorem (Rlefieren I., ý-Vpeg. 1-41) concerning

unbiased linear estimates having minimal variance. In the third section,

an additional theorem is proven, which together with the preceding material

provides a theoretical foundation for parameter. estimation in orbit deter-

mination work. This foundation is then exploited to provide formulae for

such parameters.
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1. PROPERTIES OF THE MATRIX PSEUDOINVERSE

All matrices will be designated by capital English letters; the notation

A(mxn) = (a..) means that A is an mxn matrix having aij as the element

in the i1t row and j column (i=l ..... , rn=number of rows; j= 1. ...., n=number

of columns). All matrices considered will be presumed to have elements a..

which are real numbers. A* designates the transpose of A; thus if A(mxn) =

(aij) then. A* (nxm) = (bij) where bij: = aji. I is the (nxn) identity matrix

with l's down the diagonal and zeros elsewhere; usually the subscript n will

be dropped if the dimension of I is clear from the context. En is the (nxn)
rs

matrix (e.-') such that e rs 1 and all other eij = 0; usually the superscript
rssn will be dropped if the dimension of E rs is clear from the context. A(mxn)

is called square if m=n. If A is square then IAI designates the determin-

ant of A. If A is square and IAl $ 0 then A- designates the inverse of A,

and A is said to be nonsingular. 8 designates the set of all real (nxl)n
matrices; 8 will also be called Euclidean n-space, and elements of Pn n
called n dimensional vectors, or just vectors if the dimension is clear from

the context. The symbol 0 will be used to designate either a matrix which is

identically zero or the scalar real number zero, depending upon the context.

Given any x in 8n , ixl E 1 7 x and is called the "norm" of x. The symbol

"Ile 11 will sometimes be used for "in" in the set theoretic sense; e. g. , "given

any xCP n" means given any x which is an element (a member) of the set 8n~n"

Let W(mxm) be positive definite so that W=R * R for some square R,

JRI 0, R=R*. For any acn, define 11al --- a*R* Ra = JIRaJ 2.

Theorem 1I For every (mxn) matrix A, there exists a unique (nxm)

matrix,. which we shall designate as A+, that satisfies the following four

identitie s:ý

•The bulk of the material in Section I constitutes a review and restatement of
results to be found in (1) - (3) convenient for present purposes. In general,
the absence of a proof following the statement of a result indicates that the
result and proof may be found in (1) - (3), and vice versa.
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(1) AA+ A A 0

(2), A+AA+ = A+

(3) (AA+) -AA+(mxm)

(4) (A+A)*= A+A(nxn)

Furthermore,

(RI) if D = (dij) is square (m =n) and diagonal (dij = 0 for i • j)

then D+ = (dt.) is defined by d+. = 0 for i j, d+. = 0 if d.. = 0, d+ = d.- f
i Ij, 11 1i 11 i f

d.. i 0.

(R2) if A* A= PDP*, where PP =P P =I, and D is diagonal,

then A+ = PD+P* CAt'.

(R3) if A = B C, where the columns of B are linearly independent

and the rows of C are linearly independent, then A+ = C (C C*) (B* B) B

Thus

(R3. 1) A+ = (AK A) A* if the columns of A are linearly

independent.

(R3. 2) A+ = A* (A A*)- if the rows of A are linearly

independent.

(R3..3) A+ = A- if A is square and nonsingular.

Theorem 2: The matrix correspondence A -. A+ satisfies the following

(RI) (A+)+ - A

(R2) (A) =(A) A + A

+ * *(R3) A AA = A

(R4) A*AA = A

(R5) AA+AA+* = A+

(R6) A+*A+A = A+*

(R7) A*+AA* = A

f)
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(R8) AA*A*+ A

(R9) A*A+*A+ =A+

(RIO) A+A'*A* = A+

(RII) The row spaces of A+ and A are identical, i.e., the rows of

A are in the row space of A and the rows of A are in the row space of A

(R12) The column spaces of A+ and A* are identical.

(R13) A, A+ and A* all have the same rank.

(R14) (AA)+ A A

(R15) (AA*) +(AA*) = AA+

(R16) If A+ commutes with some power of A and X is any non-zero

eigenvalue of A corresponding to the eigenvector x, then X-I is an eigen-

value of A+ corresponding to the eigenvector x.

+ +
(R17) If a. $0 then (CLA) = l-A+

(R18) 0+ = 0

Proof: All of (RI) - (RI8) follow directly with the possible exception of

(R16). To prove the latter, let A+ commute with An for some positive

interger n, and let X t 0 be an eigenvalue of A corresponding to the eigen-

vector x so that Ax = Xx, x =% Ax, A+n = AnA+. Then A+x = X- A+Ax=

X A +A Zx = %-nA+Anx = X-nAnA+x = A -n-I AnA+Ax = -n-1 A l (AA +A)
=-n- 1An-i x( -1)(-n) n -

x A x = lx, q.e.d.

+ + +
Remark: It is not true in general that (AB) is B+A+. For a counter-

example, let

A-( 0), B (1 1)
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Then

+ ,1 B-) (1
(A ( :> C B+A = =( 9

0) ~ 00

Note that C satisfies properties (1), (2), (3) but not (4) for (AB)+ listed in

Theorem 1.

Remark: Let

Then

A+ 01 0.1)= (0.1) A*
0 . 2 0.2

The eigenvalues of A are 3 and 0. The eigenvalues of A+ are clearly 0. 3

and 0. The lack of any "inverse" relation between 3 and 0. 3 shows that

(R16) of Theorem 2 needs some hypothesis. More generally, let A be the 9
singular 2xZ matrix (a -1).

A ( ;then (l+acL) •- and 04(+ )

the notation meaning A has the eigenvalue 1 + CLO corresponding to the eigen-

vector OIL)
etc. Now A÷ is readily computed to be A+ = (I+• 2)-(I +CL2-I A*. The non-

zero eigenvalue (1 + cLO) of A thus corresponds to the non-zero eigenvalue

(l + Z2)"I (I + (2)- 1( + aL) of A+. The latter is (I + cO)-1 if and only if

a.= , which is true if and only if AA+ =A+ A.

0
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Example s:

(El) E+. = E..

(E2) If A A =A 2 , then A+ =A

(E 3) )+ ( 0)

(E4) = (0.1) ( )
Definition: For A(mxn) and b(mxl),•(A,b) =A+b + (In- A+A) P

n nb

Lemma 1: The element of least norm in W (A, b) is A+ b.

Proof: Let x Ce(A,b). Then x = A'b + (I - A+ A) v for some vee , and

11x~lj = 1, A÷ b]j + 11(I- A+ A) v1i since (I- A+A) v and A+b are orthogonal;

[(I-A+A) v]J* (A+b) = v (I-A+A)* A+b = v'* (I-A+A) A+b = 0. Thus

1lxii: > 1IA+bl unless I1(I-A+ A)'vll = 0, i.e., Ilxjl > IIA+b~l unless x = A+b,

q.e.d.

Lemma 2: Let xeE . Then xr (A,b) if and only if A(x-A+b) = 0.
n

Proof: Suppose A(x-A+b) = 0. Let x = A+b + y. Then Ay = 0 so that

y = A+Ay +(I-A+A y = (I-A+A) y, x = A+b + (I-A+A) yCV(A,b). The

converse is trivial, q. e. d.

Lemma 3: Let xcP . Then xC J(A,b) if and only if A* (Ax-b) = 0.n

Proof: We shall use Lemma Z in the proof. We must show that A (x - A+ b)

=0 if and only if A (Ax-b) = 0. Suppose that A(x-A +b = 0. Then 0 =A A

(x A+b) = A Ax- A b using (R4) of Theorem 2. Conversely, let A AAx = A b.

Then A A Ax = A" Ab = Ax = AA b using (R7) of Theorem 2 and the fact

that (AA ) =AA+ =A A*, q.e.d.

Lemma 4: Let A(mxn), N(nxn) nonsingular, M(mxm) nonsingular.

Then (AN) (AN) = AA and (MA) (MA) =A A.
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Proof: Let L=(AN)(AN)+ R=AA+ Then L2 = L= L* and

R = R = R LR = (AN) (AN)+AA+ = (AN) (AN)+ {AN)(N'IA ANN-A A
= ,(R'=R *L *1 -1

AA+ =R,(LR)=R=R= L RL. Let B=AN. Then RL =(BN
-1 + + - -1+ -1 + -

(BN- ) BB = (BN-)(BN- ) (BN- )NB+ = BN- 1NB+ = BB+ = L. Thus

R R L = L, (AN) (AN)+ = AA+. Using this identity we see that (A*M*)

(A'M*)+ A* ÷ Transposing we get (MA) (MA) = A+ A, q.e. d.

Lernma 5: Let A(mrxn), and N(nxn) nonsingular. Then (A,b) =

N 74 (AN, b).

Proof: Let x = A+b + (I-A +A) v C;V(A,b). Then AN [N- x - (AN)+b]
+ + +1Ax - (AN) (AN) b = AA b - AA b = 0, N x 64v(AN, b) using Lemma 2,

N 1(A, b) < ý/(AN, b), •-(A, b) < NP(AN, b). Using this identity we see that

M(AN, b) < N- IS(ANN-1 ,b) = N- 1 ;'(A,b), NW(AN, b) < ,(,A,b), and so

MA, b) = N W(AN, b).

Lemma 6: Let V = S2 be positive definite (nxn), A(mxn), b(mx1).

Then the vector (nxl) x of least 11xi1V in V(A,b) is given by S- 1 (AS-1 )+b.

Proof: Let u S (AS-1)+b. Then Au = AA.b using Lemma 4, (
A u- A+b) =0, ue(A,b) using Lemma 2. Now W(A,b) = S- X.(A,S(,b)

using Lemma 5. Let x C 7(A, b). Then x = S 1 y where y CL(AS , b).

Now Ily ---- Il(AS- )+b~l by Lemma 1. Thus ljxiiv = IIj xl= Illll ;ŽJA,S'-)+blI=

Is-1 (A, S- +bllV = Ilullv and so u is the element of least "
t V"I norm in

74(A, b).,

Lemma 7: The following statements are equivalent:

(1) The columns of A are linearly independent.

(2) A' A is nonsingular.

(3) A+A = I.

Proof: (1) - (2): Let A Ax = 0. Then 0 = x* AAx = IIAx{{I, 0 Ax,

x= 0. We now show (2) -- (3). Let u (A A-I) y. ThenA AAu =0, u 0,

and (A+ A-I) y = 0 for all y, A +A =1. Lastly, we prove (3) (1). Let

Ax =0. Then A+Ax= 0 =x, q.e.d.

0
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"Theorem 3: The eq-vatiorn Ax - b has a solution (vector) x if and only

if AA+b = b. If the latter equality holds then x is a solution if and only if

x C (A, b).

Proof: If AA+b = b then clearly A+b is a solution. Conversely suppose

Ax = b for some xCe . Then. AA+b = AA+ Ax = Ax = b. This provers then+

first statement. To pro-w,,ethe second statement, let AA+b = b. Then x is a

solution of Ax =b if anfl only if 0= Ax-b =Ax-AA+b = A(x-A +b). By

Lemma 2 this is true if and only if x C W(A, b).

Theorem 4: (Least 4quares)-For A(mxn) and b(mxl), the set of all

(nx 1) vectors x such tli.at 11A x-bif is a minimum, is A (A, b). Also, the

nx I matrix (vector) of lLeast norm such that 1b - Axfl is minimized, is A+b.

Corollary 1: For A- (mrxi) and b(mx 1), and W(mxm) = R *R which is

positive definite, the set: of all (nx 1) vectors such that Ax - blw is a mini-

mum, is M(RA, Rb). TE--hevector of least norm such that JjAx-b~l is

minimized, is (RA)+ Rh W

Corollary 2: Let V =S2 be positive definite (nxn), W = R2 positive

definite (mxm), A(mxrm-_), b(r=xl). Then the set of all (nxl) vectors such

that IlAx-bll w is a minL:num, is %k(RA, Rb).

The vector of least " V" norrm such that JjAx - bjjw is minimized is

S- (RAS-)+ Rb.

Proof: Let x C & . 'Then
n

11b -A xN~ 1= IA'+(b -Ax) 11' + 11 (1- A A+) (b -A x) 11: 2

IIAA+(b-A )Jj + F(I-AA+)bHZ =

'IA(A+b - x), 11+ (I I-AA+)b 2

Thus x minimizes l1b - x~ l if and only if A (A+b - x) = 0 which is true if and

only if x C 4.(A, b) using -emrrma 2. This proves the first statement of the

theorem. The second fo-.iows immediately from Lemma 1. The proof of the
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Corollary 1 follows directly from the identity JJAx- blw = IR (Ax-b)1I. The 0
first statement of Corollary 2 is a restatement of part of Corollary 1. The

last statement of Corollary 2 is an immediate consequence of Lemma 6.

Theorem 5: Let A be mxn and z be any mxl matrix (vector). Then

there exists mx 1 matrices (vectors) x and y such that

(1) z = x + y

(2) x is in the column space of A

(3) y is orthogonal to the column space of A

Any vectors satisfying (1) - (3) above are unique, and

(4) x=AA+ z

(5) y = z -AA+z

(6) x*y = 0

Thus AA+ is the projection which takes any column vector (mx 1) into the

column space of A; Im - AA+ is the projection which takes any (m) vector into

the orthogonal complement of the column space of A. The proof of this

theorem follows directly from (4), (5), and (6) above. 0
II. THE GAUSS-MARKOFF THEOREM

Y/will designate a vector space of real valued random variables over the

.real numbers R. There is assumed to be a linear functional called "expected

value" on V to R, and written V (the "expected value" of v) for any v e Y.

Thus for a, be C and x, y e Y we have • = a and ax-+y = ai+b . Capital

English letters will designate matrices. Let A = (aij). Then the terminology

"A constant" below will be used to indicate that the a.. are in R ; "A variable"

will indicate that the a.. are in Y. In general, capital English letters near13
the beginning of the alphabet will be used for constant matrices and letters

near the end of the alphabet will be used for variable matrices. The expected

value functional on '/ to R may be extended to a linear function on variable

matrices to constant matrices by defining V = (i..) for any variable V (vij).

The notation 'n will designate the set of all variable (nx 1) matrices.

n0
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Elements of ;/n will also be called n dimensional variable vectors, or just

variable vectors, if the dimension is clear from the context.

Lemma 8: Let A, B be constant and V variable. Then

(1) (V) = (V*)

(2) TVB = AVB if the multiplication is defined.

Proof: Follows directly from the definitions and linearity of the "expected

value" operator.

Definition: Let v be a variable vector. Then t (v) (v - ) (v -

and t (v) is called the variance-covariance matrix of v.

Lemma 9: Let A be constant and v be a variable vector. Then

t (Av) = At$ (vý A*.

Let (H) designate the hypothesis y is an (mx 1) variable

vector, x is an (nxl) constant vector, A(mxn) is constant, y = Ax, and
*(y) = W = R is positive definite, R = R . Let c x, for some constant

c (nx 1). We shall call an estimate i of i linear if i = g y for some con-

stant g (mrx 1), and unbiased if " = 4.

Theorem 6 (Gauss-Markoff): Let ' be as above and assume (H). Then
Shas an unbiased linear estimate if and only if A+Ac = c. In the latter case

c (R-I A)+R-1y-MV is an unbiased linear estimate of * having minimal
variance c (A* W- A)+ c in the class of all unbiased linear estimates of 4'c• ( W -1 A)-1 A*W- n h aineo

IfA+ A I, then *ViIf -* -h = ( andthe variance of I IMV is
c*(A*W1 A)-lc.

Proof: Suppose * has the unbiased linear estimate 4' g y. Then
c x = * y = g*Ax for all x, c* =gA c =A*g, A+Ac = A+AA* = A =

'i.

c. Conversely suppose A+Ac = c. Then c*A+A = c* and so using Lemma
4 -1 -- * *

4, we have c (R- A)+Ry = c (R- A)+(R-1A)x=c A Ax=c =4 so

"TMV is clearly an unbiased linear estimate. This proves the first statement

tThis may be proved by direct computation

ttConsult Theorem 2 for the appropriate identity used.

- - - - - - - -_ _ _ __ _ __ _ _
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of the theorem. By the first part of the proof, any unbiased linear estimate 0~- ***(y)) g g*2

Sgy must satisfy the property A g = c. Also =* $g(Y g = g R g.

Thus the unbiased linear estimate of minimal, variance is given by the solu-

tion A *g c such that 11 is minimized. The latter solution is given by

= R (A R ) +c, which yields V as the estimate sought. Also

'MV' =g"R RgM=c (R- A)+ R R R- (AR ) c =c (R- A)

(A*R-l)+ ctt = c'(A*R- A)+ c = c (A W A) c. If A+A = I then the
-1

columns of A are linearly independent. Then the columns of R A are

linearly independent and v (R 1A)+ y c (R A) (R A)
-1 -1 AV 1 I ~ e

(R A) R-ly = c (A"W-1A)-1A*W-ly, q.e.d.

Suppose we assume (H)I and define xMV (R- A)+R- y. Then
+

(x ) = (AW-1 A) using the same argument as in the proof of the above

theorem. Note that xMV now enjoys the following properties:

(1) If = c x has an unbiased linear estimate, then c xMV is an

unbiased linear estimate of * having minimal variance c*$(XMV) c in the

class of all unbiased linear estimates. This follows directly from the

theorem above. 01

(2) The vector x is the vector of least norm such that S(W) E
(yAx) *W- (y-Ax) = Jy-AxJw is minimized. This follows directly

from the (least Squares) Theorem.t If for an arbitrary positive definite

matrix W, xLS (W) is defined to be the vector of least norm which minimizes

S (W), then xLS (W) is called the generalized weighted least squares estimate

corresponding to the weighting matrix W. Thus xMV is x LS($(y)).

'See Theorem 4, Corollary 2

Consult Theorem 2 for the appropriate identity used
. Se + T.*'See Theorem 4, Corollary 1

0
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III. PARAMETER ESTIMATION FOR ORBIT DETERMINATION

Theorem 7: Let v1 and v 2 be two independent variable vectors in ryn
such that v = V and V. (vi) is positive definite (i = 1,2). Let E

1 2 (v)
(V'i + V-1 )-1 (v• v + V v ). Then v is unbiased (i. e., v -= v = V1 ) and

1 2 (V v1 1 + -2 1 - 2)
v has minimal variance covariance matrix (VI + V 2  in the unbiased

class of vectors Rv 1 + (I-R)v2 for R constant (nxn).

Proof: The fact that $C) = (V1  + V2 ) follows by direct computation.
Let y = Rv1 + Sv2 where R is constant (nxn) and S I-R. Then clearly y

is unbiased. We wish to show that $(y) > $(v), which is defined to mean

A •(y) - is positive semi-definite. By direct calculation A = RVI R +
* -1 -1 -1 -1 -1 -1 -1 -1 -1

SV 2 S - (VI +V 2 ) . Then A =(V + V ) B(VI +V 2 ) , where

B = [(V- 1 +÷V-1) RV ]V- [V R (V-1 + V1)] + [(V- 1 +V )SV 2 V-1 2 1 11 1 2 -'2 1

[VS2(Vl + VI )] 1 2 - (V I +V 1 ), B = CV 11 C +DV 2 D -(Vll + 2V 21

where C (VI + V 1 )RV, D (V11 +V1) SV Thus B -CP 2 C* +
2 2 2 1 P1 ~A

DQ D- (P 2 + Q2 ) whereV 1 p2, ,V =Q =Q * =Q 2. Let F -

(CP-P) (CP-P)* + (DO-Q) (DQ-Q):. Then F = (CP-P) (P C;* - P) +

(DQ-Q) (Q D*- Q) = C PZ C-P-C CP2_p + p2 + DQ D -DQ2-Q D* +
2 22 2 2 2 2* 2 2

Q CP C +DO D + [(P + Q -(CP + DQ)- (P C +Q D)1. But2 2_ l -l - -vl - 1 - 1 -lI 2
CP 2+DQ 2=C-C 1 +DV 2 -1=(V 1 +V 21) (R +S) =V-1 + V2 - + Q. and

by transposing both sides, P 2C; + Q D* = p 2 + Q . Thus, F C PC* +
2 * - 2 2 c

DQ D' - (P + Q.) = B and B is positive semi-definite, since B = F, which

is the sum of two terms of the form MM and hence positive semi-definite.

Then A is also positive semi-definite since A is of the form MBM, q. e. d.

We shall now discuss applications of the preceding material to parameter

estimation in orbit determination work t Let f(a,p) be a vector (nxl) valued

function of the vector variables a(rxl) and p(sxl); f(a,p) is the vector of

observations without noise given the (vector) parameters a and p. Here a is

some parameter vector we wish to estimate and determine the variance co-

variance matrix of the estimate; p is some parameter vector which we do not

tThe general notation, necessary background and essential formulae parallel

the development in Reference 5.
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wish to estimate, but wish to account for the effect of an uncertainty in p on 0

the variance-covariance of the estimate of a. We shall assume that a and

Pt are the "true" estimates of a and p, respectively. Assume that f (a, p) is

linear in the neighborhood of (at, pt') so that f (a,p) - f (at, pt) + A (a - at) +

P (p - pt) provided a and p are sufficiently close to at and Pt, respectively,

and A, P are constant nxr and nxs matrices. Let R and C be (nxx 1)

vector variables satisfying R = f (at, pt) + C, with 7E = 0. Note that R is the

vector of observations with noise; the noise is assumed to have mean zero.

Let c be a constant (r xl) vector. Then R - f (c, pt) = f (at, pt f (c, + p = A

(at- c)+ , = A (at - c) and the generalized weighted least squares

estimate for at-c would be given by (at-c)S MA(R-f(cpt)) -MIA(at-c)+•)

where M = (A W A) A W- 1 for the weighting matrix W.+ Since MA=I we

have (at)Ls-c = at-c+MC, and so (at)LS -at = Me. Now suppose a is

a (r xl) vector variable such that ao = t and a0 - at is independent of C.

Then a° - at is independent of (at)LS - t and the minimal variance unbiased

linear combination of the two is given by:

at= K(V(at)LS + U-ao) where V = Q((at)LS)-, U $(ao)-

and

K_(U+V) Then K V [c+M(R f(c, pt)]+Uao

Now V = (M*(9)M*)- and if we assume c = a then at ao + KVM(R- f(aoPt))'
A

Define a t by

Aat = a + KVM(R-f(ao, p))
000

= a + KVM(R'f(atpt) + f (atpt) - f(a° Po))

= a0 + KVM(C + A(at-a 0 ) +P(pt-Po))

t We have assumed A A is nonsingular, which is equivalent to A+ A = I. See
Lemma 7.

______________o
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aKta (V+U a - t+K (V Me+ V(a a0)+ vm tP.))

K[VMC-U(a -a) + VMP(p~ -pl

ý$(KVMc) KVM$(C)M*VK= KVK, V =(Mt(E)M*) -1

[(A w A)- A W '$iC)W-A(A*W 'AV

(t- a t) K [V+VMP$(pt -p 0 )P*M*V + t(ao) 1 IK,
,Aa)K+KVMP$(p pP*:M* VK.

Note that if W=$(C) then V=A W A, VM=A W ~,anda atK+

K AW P (p OP W1 A K.



Page 14

REFERENCES 0

1. R. Penrose, A Generalized Inverse for Matrices, Procý. Cambridge
Philos. Soc., 51, pp 406-413, 1955.

2. R. Penrose, On Best Approximate Solutions of Linear Matrix. Equations,
Proc. Cambridge Philos. Soc. , 5Z, pp 17-19, 195b.

3. T. N.E. Greville, The Pseudoinverse of a Rectangular or Singular
Matrix and its Application to the Solution of Systems of Linear
Equations, SIAM Review, pp 38-43, January 1959:.,

4. Henry Scheffe, The Analysis of Variance, John Wiley, New York, 1959.

5. L. Wong, A. S. Liu, M. C. Fujisaki, 0. Senda, Computer Program Guide,
Tracking Accuracy and Prediction Program, Space Technology
Laboratories, 8976, 6005-NU-000.

0



0

z z z z

o obo "t, u

U vo~ ~ . 0, '400 U. g. 0 t4

.0"o z , , 's o 4; 41.~4
v0 Z

bo a -0 4.,.Q. -. 40 r A.0

"o~~ N 0. 4 ,o ,a

Z .. L0.

0_0.z- V4 -5- 0 V

0z U 4 u r
- 'W Z 0, ' V,,44' CL~ 0 k ,4,.k d

04, 0 0 - 0V

. 1 4,
0 ) 0 a, -. -r . 4 00 0 0,..f,0

H . b. r
w u *0 0- 4)' m ~0 a

Z 0

00 -'d' r~ '4 4, 0
4) 0 .0

'ol m~4 'u 'u o 0..5 4v

IWO E4 0A 'd 0



0 0

zo 'o 0 ,o 0
o

U 0

vo X.0,

0k

S ol

'0 >. 
'04

u 0

o 1.

Ik 00 l 00



$4 CU W W *0N u

Zd 
04 

, to 's0 uo .1 m 4 0
1 U0 -0

4 - ~ -l; % 0 I Q~o .~$o

z~c '0 0. N .
"' 00

*'0 mv- ~'¾ u$~ 0 104~*~

0; r.~ 
4  

0 .0 -H
N. o 4$% COO 'u .'

(-~6 d E*0. 4) 'od -d

1.0wo 04 "U. $ -0 -Ct~
$4 ..u '4 r be $ 4

101.ýI nU) gg .404 Cfl4 N ý 0 r 0.,04$"') C
fI ) 0' 0xo - - 00 'a P4z $ 'C 0 -0 al

0 4
0

q ' N'O vt-$0 rN.,.'$0
0 . 0) N 4)N r.2 0.40W- 0 k. v 0''S'.

,oO o-kt Nr 
0

N~0 $49 r
"d 0 ,0' 04$ ý 0 N03 4$r:$ M~4~ ~ 4 

)Z t'

0 kb-4 t 4) 'Oo, 30,44 O,, I 4) V

0 - H ~ , 
t $ 0 

t O 4) $100 '
0  

4$0 r N

E. 2% 0 0~ H U
z - - . t r4 0. z x 2004 4$u U 0~

0'0) 1vV.-d 'H>.- 41 No.0$4$oH0 0-'_-.ksj E-NE-4$w$A4O

W W

U) to (

k k. r.rO dI;mtUr' FC d- 0ý

U) ý U U

.0 .0 '0

V~ 2' - ~ k $4 $u40 0 0. 0
$ 0 4 0 N 0, )~ , 0) 'S 0 k 1 -0

0 u., r' N "u E - 0 vu0
0

0 ':d m' ~ 0 0 Ln ON'0 ~ N.0$ v .v
'0Zto 0 4$ 0 0 N.0$ k, -- P' 4)4$0 0 N M'14$

-. S, 4. u~40 4 ~r)0 2 u~
$4r~$ j ~ 's. 4 'or 0 0 0

t ~5 W2 4 v10 v < AC-:4 -u 2 ,s0 0 0

0, N,
0  

C4$. 0' V$ x 0 0 v.
Z > V4 r~Lo 0z SU 0or k 9r .

0;G 0-$ 'q N414$.2 0 1'~. >&0:20'0 1N- O-0.2N0
2 :2 N4 '- 4 4 2 0.4$N,0~~4$4$ 1.~ '0 IO~$ 1 ' $4,~Q4N ox$44$E~0"CL~

0
x~.

4 
0 04o

0

w , $4 4: 0 4-0

V) ~0' >oEC.$0 9: N rXa 4  ~ .'go -0 rr
U~(,4bo 1 4 0H~o

$  
g-N 4$ 0 0 0L W C' E u mNV

't . 0 ' 00
U % kZb 0 r"2 ~$ 4$ 0 N

0
aZ) N

0  
s.u N 22o 0

HZ 0 o .0,0 $00r4'ON'0 0'0

.00



N ry

U9 c

4) 2

u. u

0 kd4

o :U,.~'.
I. Oa

00

4 0 >

IML01 . 40.1 k
r~ .

q..o 'a


